

High Energy Processes on Aircraft – Structural Integrity Considerations and Lessons Learned AVT-302 Research Workshop on Paint Removal Technologies for Military Vehicles

Presented by Dr. Paul N. Clark

Presentation to

Dr. Ludmila 't Hoen-Velterop Co-Chair (The Netherlands) Mr. Marko Yanishevsky, M.A. Sc. P. Eng. Co-Chair (Canada)

Distribution A. Approved for public release: distribution unlimited: USAFA-DF-2017-305

Acknowledgements

• Colleagues at Hill AFB

- Mark Thomsen, Ph.D. (coauthor)
- Scott Carlson (coauthor)
- Michael Blinn, Ph.D.
- USAF, USAFA, Sabreliner Aviation Inc.
- Many conversations...notably with:
 - Marv Nuss, FAA-retired
 - Michael Gorelik, Ph.D. FAA
 - Chuck Babish, ASIP Senior Leader USAF
 - Larry Butkus, Ph.D. USAF
- AFRL: Bob Ware, Mike Hirsch, Jackson Heinz
- SwRI Southwest Research Institute
- NATO AVT-302 Committee

Reference Materials

- 1. http://index.heritage.org/military/2015/chapter/us-power/us-airforce/#identifier_9_16
- 2. SAE MA4872, Paint Stripping of Commercial Aircraft Evaluation of Materials and Processes, SAE Aerospace, Aerospace Standard, September, 2010
- 3. Laser Cutting Metallurgical Report, A-10 ASIP, June 2008 (exact reference unavailable)
- "S. Carlson, Qualification of Advanced Structural Sustainment Tools/Processes within the ASIP Environment – Perfect Point[™] E-Drill[™]," USAF ASIP Conference, November, 2012
- 5. D. Andrew & J. Macha, "Two T-38 Test Programs: Sealant Removal Enemy #1, T-38 ASIP Summit XIV," Southwest Research Institute, January 2017
- 6. ASM Handbook, Volume 13, "Corrosion", p.592, Fig.11, 1996
- J. Calcaterra, "Effect of Manufacturing Variability on Air Force Systems", ASIP 2008

Reference Materials continued

- 8. R. Pilarczyk, S Carlson & G. Stowe, "'Is ASIP Still Alive'" The A-10 Lower Wing Skin Cracking Issue of 2008-2009," USAF ASIP Conference, November 2009
- 9. The New Weibull Handbook, Fourth Edition, by Dr. Robert B. Abernethy, March 2003
- 10. A Reliability Analysis Approach to Fatigue Life Variability of Aircraft Structures, Whittaker, Air Force Materials Laboratory, Air Force Systems Command, WPAFB, 1969.
- 11. Optimization of Aircraft Laser Coating Removal Processes, Final Report, No. W91ZLK-10-D-005, Feb 12 2014, by Concurrent Technologies Corporation
- 12. Final Draft Fatigue Data Analysis Report, RFQ No. CTC-P-13-0160, Richard C. Rice and Jana Rubadue, Battelle, Nov 22 2013

CAVEATS

- The opinions expressed are those of myself and the coauthors
- I am not a statistician
 - "Lies, Damn Lies and Statistics"
 - Phrase popularized by Mark Twain
 - Interesting book by Michael Wheeler

- Weibull is not necessarily the best way to analyze fatigue data ---
 - It is an alternative method utilized by commercial aerospace manufacturers
- The focus is on the material behavior as a result of the processing → specifically paint removal
 - > Emphasis on high energy processes (plasma, laser, etc.)
 - I am *not* an expert on lasers or plasma

Presentation Overview

- Pace of technology
- What are some potential challenges from high energy processes?
- What does any change from the baseline suggest?
 - Protecting the airworthiness baseline and structural integrity is paramount!
 - Fatigue/durability
 - Nondestructive Inspections
 - Corrosion
 - Sustainability, etc.
- Characterizing the microstructure
 - Initial Discontinuity State (IDS) Baseline
 - Evolving Discontinuity State (EDS)
- Distributions and Weibull analyses
- Evaluation criteria suggestions
 - Evaluations to ensure the candidate process does not compromise the <u>airworthiness baseline</u>
- Engineered protections to prevent damage
- Conclusions & Recommendations

The Pace of Technology

SCIENCE AND TECHNOLOGY ORGANIZATION

NORTH ATLANTIC TREATY ORGANIZATION

	Aircraft						
	A-10	T-38	F-16	KC-135	B-52	B-1	F-22A
2005	1977	1961	1978	1957	1955	1986	2005
Original Count	716	1146	2230	803	744	104	187
Projected Retirement	60	70	36	83	80	52	?
Age*				Λαο	rando	1055-1	2017
*Estimated by age of remaining assets and projected date of retirement							

• 27 years old: Average age of USAF aircraft in 2015

Reference: 1

Technology circa 1966

Similar Technology Today

Caution is advisable as new processes emerge.

31st AVT Panel Business Meeting

High Energy Process Damage

• High Energy systems utilize *HEAT* to do the work

SAE MA 4872: "Substrate temperature shall not exceed 80 °C or 180°F

Potential Thermally Induced Damage

• Damage goal:

- Preferred: NONE
- Accepted: <u>Minimized impact to airworthiness</u>: predictable, sustainable, detectable, repairable

Change to microstructure

- > Durability
- Widespread fatigue damage (WFD)
- Multiple site damage (MSD)
- Multiple element damage (MED)
- Damage tolerance potentially altered
- Fail safety potentially compromised
- Surface integrity
 - Any change or compromise to the structure surface or protection system

Potential Damage continued...

• NDI responsiveness considerations

- Physics of the method?
 - Probability of detection?
 - Threshold of detection?
 - Cracks hidden by process?

• Corrosion prevention and control considerations

- Change in galvanic differences?
- Coatings and other protections still viable?
- Primer/paint adhesion?

• Ability for Maintenance to respond

- Detectability (...is damage detectable?)
- Reparability (...is damage reparable?)
- Reliability (...what is the reliability of the repair?)
- Introduction of residual stresses?
- Are the evaluations representative?

High Energy Processes – Lessons Learned

- Laser Cutting (USAF 2007) Reference: 3
 - Microstructure changed
 - ➢ H.A.Z. & recast layer
 - Micro-cracking
 - Surface integrity/durability degraded
 - 94% durability downgrade for 2024-T3
 - AA-07-02 (Airworthiness Advisory, Oct. 10, 2007)

- Microstructure changed
- H.A.Z. & recast layer
- Micro-cracking
- Surface integrity/durability degraded
- 96% durability downgrade for 2024-T351
- Damage undetectable after 'cleaned-up'

• USAF Fiber Laser Sealant Removal Experiment: Parameters

Material	Max Stress (ksi)	Stress Ratio	Thickness (inch)	Kt		Dwell Time (seconds)	# of passes	Coupon Designation
		40 0.1	0.032	1.0	-	N/A	N/A	32-1.0-B-1,2,3
						10	N/A	32-1.0-D10-1,2,3
						30	N/A	32-1.0-D30-1,2,3
						N/A	30	32-1.0-P30-1,2,3
						N/A	N/A	32-1.6-B-1,2,3
7075-T6 sheet				1.6		10	N/A	32-1.6-D10-1,2,3
						30	N/A	32-1.6-D30-1,2,3
	40					N/A	30	32-1.6-P30-1,2,3
			0.090 -	1.0		N/A	N/A	90-1.0-B-1,2,3
						10	N/A	90-1.0-D10-1,2,3
						30	N/A	90-1.0-D30-1,2,3
						N/A	30	90-1.0-P30-1,2,3
				1.6	-	N/A	N/A	90-1.6-B-1,2,3
						10	N/A	90-1.6-D10-1,2,3
						30	N/A	90-1.6-D30-1,2,3
						N/A	30	90-1.6-P30-1,2,3

Fatigue Coupon

No process controls for these experiments... Likely represents a near worst case scenario...

Reference: 5

31st AVT Panel Business Meeting

Metallographic Examination

- All pulsed regions were sectioned in longitudinal and transverse directions and examined
- Common microstructural features:
 - Surface and subsurface discontinuities
 - micro-cracking
 - Recast layer
 - Voids
- Many DISCONTINUITIES
 - Many opportunities for crack nucleation

kV 10.9 mm ETD 3.5 M3

Reference: 5

31st AVT Panel Business Meeting

Fatigue Samples

- Test sample cracks originated at pulsed surface
- Ratchet marks indicate numerous individual crack nucleation sites
 - > MSD
- Origin region exhibited discontinuous step feature with similar dimensions to recast zone

31st AVT Panel Business Meeting

Fiber Laser Sealant Removal: Fatigue Testing

Matarial	Thickness	K+	Kt Dwell Time # of Coupon		Coupon	Life	Notos	
Material	(inch)	κι	(seconds)	(seconds) passes Designation (cycles)		(cycles)	notes	
	0.032	1	N/A	N/A	32-1.0-В-1,2,3	8,540,303	3/3 Samples Run-Out	
			10	N/A	32-1.0-D10-1,2,3	45,050	99.5% Knockdown	
			30	N/A	32-1.0-D30-1,2,3	34,102	99.6% Knockdown	
			N/A	30	32-1.0-P30-1,2,3	26,995	99.7% Knockdown	
		1.6	N/A	N/A	32-1.6-B-1,2,3	4,377,733	2/3 Samples Run-Out	
7075-T6 sheet			10	N/A	32-1.6-D10-1,2,3	85,050	98.1% Knockdown	
			30	N/A	32-1.6-D30-1,2,3	41,328	99.1% Knockdown	
			N/A	30	32-1.6-P30-1,2,3	65,680	98.5% Knockdown	
	0.09	1	N/A	N/A	90-1.0-B-1,2,3	6,531,630	2/3 Samples Run-Out	
			10	N/A	90-1.0-D10-1,2,3	53,487	99.2% Knockdown	
			30	N/A	90-1.0-D30-1,2,3	52,781	99.2% Knockdown	
			N/A	30	90-1.0-P30-1,2,3	61,950	99.1% Knockdown	
		1.6	N/A	N/A	90-1.6-B-1,2,3	7,873,343	1/1 Sample Run-Out	
			10	N/A	90-1.6-D10-1,2,3	TBD		
			30	N/A	90-1.6-D30-1,2,3	TBD	Incomplete	
			N/A	30	90-1.6-P30-1,2,3	TBD		

Many discontinuities induced by the process.

Reference: 5

31st AVT Panel Business Meeting

DISCONTINUITIES

are an interruption of the structure

• <u>Types of DISCONTINUITIES</u>

Initial Discontinuity State (IDS)

- GEOMETRIC (IDS_{geometry})
 - Notches, radii, etc.
- MATERIAL (IDS_{material})
 - Constituent particles, voids, porosity, etc.
- MANUFACTURING (IDS_{manufacturing})
 - Surface gouges, grinding, embedded particles, scratches, etc.
- Evolving Discontinuity State (EDS)
 - Environment dependent
 - Service loading (usage) induced

Maintenance and sustainment process induced -

Baseline / pristine

Changes to baseline with time, usage, inspections, repairs, paint/strip cycles, etc.

IDS (Initial Discontinuity State)

Examples of Initial Discontinuities

- Constituent Particles
- Grain Size
- Grain Shape
- Grain Orientation
- Porosity
- Voids
- Inclusions
- Various Phases
- Manufacturing
- Assembly
- Processing
- Etc.

Distributions can be used to characterize *PROBABILITY*

IDS Distribution (Notional)

IDS Distribution (Notional)

31st AVT Panel Business Meeting

IDS_{manufacturing}

• Multiple nucleation sites

Widespread fatigue damageMultisite damage

- Machining marks
- IFS DID NOT WORK

Example: Secondary Crack – <u>surface as machined</u> (Cracking from accident aircraft)

Based on Pilot Testimony

Distribution Unlimited

Reference: 7

Pitting Corrosion EDS; Leads to Fatigue (MSD)

Reference: 8

Removed from a USAF aircraft in 2008

31st AVT Panel Business Meeting

IDS & EDS Distribution (Notional)

31st AVT Panel Business Meeting

Two-Parameter Weibull Distribution

$$F(t) = 1 - e^{-\left(\frac{t}{\eta}\right)^{\beta}}$$

- F(t): Unreliability or 1-R(t) where R(t): Reliability
- t: failure time (cycles, usage, etc.)
- η : (Eta) characteristic life or scale parameter
 - ➤ Life where the Weibull line intersects 63.2% probability
- β : (Beta) slope or shape parameter
- *C*: 2.718281828, the base for natural logarithms

Reference: 9


```
Waloddi Weibull
(1887 – 1979)
Claimed function:
"...may sometimes
render good
service."
U.S. Air Force
funded Weibull's
work until 1975
```


Confidence Adjustment - Data

31st AVT Panel Business Meeting

Confidence Adjustment - Variance

31st AVT Panel Business Meeting

Fatigue Modification Factor (FMF)

Experimental Data

- Baseline
 - Material tested as received → "un-processed"
 - Exception: Steel Baseline were grit-blasted
- Fiber Laser Depaint
 - Continuous wave 6 kW fiber laser, stripped to substrate (5 cycles)
- Hand Held Laser Depaint
 - Q-Pulsed 300 W Nd:YAG laser, stripped to substrate (5 cycles)
- Plastic Media Blast (PMB) Depaint
 - IAW Air Force T.O. 1-1-8, Type V, stripped to substrate (5 cycles)
- Hand Sanded Depaint (Dual Action Sander)
 - IAW Air Force T.O. 1-1-8, stripped to substrate (5 cycles)
- Chemical Strip Depaint
 - IAW Air Force T.O. 1-1-8, Cee-Bee[®] R-256, stripped to substrate (5 cycles)

- Compatible
- Difficult to Utilize
- Impossible to Draw Useful Conclusions

It is recognized that these categories are subjective. They are use for demonstrative purposes.

Compatible

- Compatible Betas (4.37-10.7) *except...*
- Baseline β∼18.8

•

Minimal confidence adjustment

- Large beta has impact on FMF
 - Perhaps artificially low FMF for processes investigated

Fatigue Modification Factors (FMF)

Automated Fiber Laser	Hand Held Laser	РМВ	Sanded	Chemical
0.65	0.57	0.46	0.50	0.53

Difficult to Utilize

- Compatible Betas (5.29-9.32) except...
- Fiber Laser
 β~3.58
- Hand Held Laser
 β~15.3
- Relatively comparable for N_{95/95}
- FMF_{Chem} is positive

Fatigue Modification Factors (FMF)							
Automated Fiber Laser	Hand Held Laser	РМВ	Sanded	Chemical			
0.51	0.71	0.20	0.78	1.08			

Impossible to Draw Useful Conclusions

- Betas mixed (0.84-12.0) Compatible groups:
 - 1. Baseline & Chemical
 - 2. Others NOT

Baseline

- Lower beta (2.36)
- Sanded lowest life at high R(t), yet test data highest overall
 - β~**0.84**
 - Seen in FMF_{Sanded}
 ~96% knockdown
- No consistency in data or results...

Fatigue Modification Factors (FMF)						
Automated Fiber Laser	Hand Held Laser	PMB	Sanded	Chemical		
0.137	1.550	0.265	0.038	1.261		

Evaluation Criteria Suggestions

- SAE MA4872 Aerospace Standard
 - Title: "Paint Stripping of Commercial Aircraft Evaluation of Materials and Processes"
 - "The OEMs were directly involved in the development of the requirements and test methods."

• **BASELINE** is the foundation

- A compromised baseline = questionable comparisons
- Regarding the process to be evaluated
 - Will the process affect airworthiness and/or sustainment?
- Generating, collecting, and analyzing data
 - Consider a 'round robin' (multiple labs)
 - Demonstrates a robust test protocol
 - More data means more confidence
 - Consider incorporating Weibull analysis
 - Improved understanding of variability and statistical confidence

Engineered Protection Considerations

- Preserving the airworthiness baseline and structural integrity of aircraft is paramount!
- Engineer solutions to prevent damage to structure
- Prevent damage from abuse (accidental or intentional)
 - Prevent users from 'turning up the heat'
- Examples
 - Locked controls for power intensity settings
 - Motion, temperature and contrast sensors
- Methods for detecting and repairing damage
- Analysis tools for assessing life and inspection intervals from unexpected damage and subsequent repairs

Training technicians is insufficient.

Lessons Learned

- Processes that induce heat (thermal utilization) have the potential to alter the microstructure
 - Can lead to widespread fatigue damage
 - Degradation to durability
 - Compromises to structural integrity
 - Compromises to airworthiness

Processes may induce damage that is not detectable through NDI

May lead to a quality escape and potential threat

Weibull Analysis

- > Can be flexible and beneficial for capturing variability and confidence
- It is NOT a "one-size-fits-all-needs" analysis tool

• Murphy was an optimist

Conclusions

- Technology is advancing rapidly
 - It is our duty to understand the impact of new processes prior to implementation to minimize unintended consequences
- Lasers and other high energy processes show great promise for improving the removal of paint
- High energy processes have the potential to induce compromises to structural integrity
- Evaluations should be thorough and standardized
- Weibull Distribution
 - > Another way of looking at the data
 - > Can help reveal not-so-obvious characteristics of data
 - Good representation of variability

Recommendations

- Understand the impact to airworthiness and sustainment
 - Investigate and understand failure mechanisms
- Engineer methods and processes to protect structure
- Control the application of high energy processes
- Take advantage of lessons learned
- Utilize existing or develop standards for evaluation
 - SAE MA4872 (Aerospace Standard Paint Stripping)
 - EZ-SB-13-001 (Material Substitution Guidelines Metallics)
- Take experiments and Test Protocol Development ...<u>one step at a time</u>

Thank you for your attention. Are there any questions?

31st AVT Panel Business Meeting

Distribution Unlimited

Slide 38

Images and Internet References

- 1.
 https://www.google.com/search?q=Lies,+Damn+Lies+and+Statistics+book&client=firefox-a&rls=org.mozilla:en

 US:official&channel=sb&biw=978&bih=583&source=lnms&tbm=isch&sa=X&ei=ybl-VNubCNKdygT3hlClCQ&ved=0CAcQ_AUoAg&dpr=1.5
- 2. https://www.google.com/search?q=1960+radio&rlz=1T4PLXB_enUS618US618&tbm=isch&imgil=vlKejvFxfFSuKM%253A%253BH4SKgkHcsxlmwM%253Bhttps% 25253A%25252F%25252Fradioattic.com%25252Fitem.htm%25253Fradio%2525253D0880133&source=iu&pf=m&fir=vlKejvFxfFSuKM%253A%252CH4SKgkHcsxl mwM%252C_&usg=__WqiNAIx5YSqNOJPbXuo_-nnWsCA%3D&biw=1302&bih=526&ved=0ahUKEwim4d-_5-_UAhVJxWMKHd2jBWcQyjclMw&ei=N6JbWebpEMmKjwPdx5a4Bg#imgrc=vlKejvFxfFSuKM:&spf=1499177539541
- 3. https://www.google.com/search?q=1960+phone&rlz=1T4PLXB_enUS618US618&tbm=isch&imgil=vPybieRm1coX2M%253A%253BJ2NqJgD_n9XTbM%253Bhttp %25253A%25252F%25252Fwww.oaktreevintage.com%25252Fvintage_telephones.htm&source=iu&pf=m&fir=vPybieRm1coX2M%253A%252CJ2NqJgD_n9XTbM %252C_&usg=__xyzE0Q2PbldmOchmh-0xwMG8T9U%3D&biw=1302&bih=526&ved=0ahUKEwjlmKfv5-_UAhUB2WMKHc3uBFUQyjcIMw&ei=m6JbWaVfgbKPA83dk6gF#imgrc=A-4AYjJnkNKgOM:&spf=1499177640597
- 4. https://www.google.com/search?q=1960+camera&rlz=1T4PLXB_enUS618US618&tbm=isch&imgil=4GThWo7oEB2eyM%253A%253Bv7nTFQ1HWHI4mM%253B http%25253A%25252F%25252Fwww.digicamhistory.com%25252F1960s.html&source=iu&pf=m&fir=4GThWo7oEB2eyM%253A%252Cv7nTFQ1HWHI4mM%252 C_&usg=__SAvfbzxEgvD2ef4VwcEFLE5eoc%3D&biw=1302&bih=526&ved=0ahUKEwj6vdev6O_UAhUCwmMKHYmhAG4QyjcIMw&ei=IqNbWfqkAYKEjwOJw4LwBg#imgrc=4kk2MjEFNd7RoM:&spf=1499 177775569
- 5. https://www.google.com/search?q=library+1960&rlz=1T4PLXB_enUS618US618&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjvid2L7u_UAhUFLmMKHbPtCCY Q_AUICigB&biw=1302&bih=527#imgrc=LB_UOHz_koUXXM:&spf=1499179300897
- 6. https://www.google.com/search?q=new+york+times+1960&rlz=1T4PLXB_enUS618US618&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi3lenC7O_UAhUX7m MKHe-7DgcQ_AUICigB&biw=1302&bih=527#imgrc=BiQjEV2GMEhJ-M:&spf=1499178880037
- 7.
 https://www.google.com/search?q=cell+phone+image&rlz=1T4PLXB_enUS618US618&tbm=isch&imgil=VSu0dFbH3uxodM%253A%253BAvXphfCkWtNABM%25

 3Bhttps%25253A%25252F%25252Fpixabay.com%25252Fen%25252Fphotos%25252Fscreen%25252F&source=iu&pf=m&fir=VSu0dFbH3uxodM%253A%253A%252CAvX

 phfCkWtNABM%252C_&usg=__8NoSnaQWaVFNFrqhRjr3eFfLpKs%3D&biw=1302&bih=527&ved=0ahUKEwiN4vz86

 _UAhVE02MKHSLrB2kQyjcIRw&ei=6aZbWc3JGcSmjwOi1p_IBg#imgrc=VSu0dFbH3uxodM:&spf=1499178746744
- 8. SAE MA4872, Aerospace Standard, Paint Stripping of Commercial Aircraft Evaluation of Materials and Processes, submitted March 1998, reaffirmed September 2010
- 9. http://www.google.com/imgres?imgurl=http%3A%2F%2Fblog.psoda.com%2Fwp-content%2Fuploads%2F2014%2F07%2Flessonslearned.png&imgrefurl=http%3A%2F%2Fblog.psoda.com%2Fmake-the-most-of-lessonslearned%2F&h=587&w=819&tbnid=onG5iuAW_xkF9M%3A&zoom=1&docid=sDIIpmwEUWWE9M&hl=en&ei=lvdgVLDdOomfyATB_4HwCg&tbm=isch&ved=0CE 8QMygWMBY&iact=rc&uact=3&dur=3679&page=1&start=0&ndsp=23
- 10.
 http://www.gettingsmart.com/wp-content/uploads/2016/10/Laser-Cutting

 Technologhttps://www.google.com/search?q=laser+depaint+aircraft&rlz=1T4PLXB_enUS618US618&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjA58qMovL

 UAhVJi1QKHezODhkQ_AUICigB&biw=1302&bih=527#imgdii=vfHaSAzPuqrQ3M:&imgrc=i4o4AGXRn2ZIPM:&spf=1499261984216
- 11.
 https://www.google.com/search?q=laser+depaint+aircraft&rlz=1T4PLXB_enUS618US618&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjA58qMovLUAhVJi1Q

 KHezODhkQ_AUICigB&biw=1302&bih=527#imgdii=vfHaSAzPuqrQ3M:&imgrc=i4o4AGXRn2ZIPM:&spf=1499261984216